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2 Data Models

Introduction

Data in a GIS represent a simplified view
of physical entities — the roads, mountains,
accident locations, or other features we care
about. Data include information on the spatial
location and nonspatial properties of entities.

Each entity is represented by a spatial
object in a GIS, defining an entity-object cor-
respondence. Because every computer system
has limits, we can’t save the exact boundary
or all characteristics of features. As illustrated
in Figure 2-1, we may represent land cover by
a set of polygons. The polygon boundaries
may be defined by a connected set of points,
e.g., at an average spacing of approximately
every 3 meters. We may record data that
define each land cover, perhaps vegetation

type, ownership, and landuse. Edge details
smaller than 3 m and unrecorded characteris-
tics such as value are not included in this rep-
resentation.

The spatial detail and essential character-
istics are subjectively chosen by the data
developer. The density of points required by a
surveyor will be different than that for a land
use planner. The essential characteristics of a
forest would be different in the eyes of a log-
ger than those of a hunter or hiker. No one
representation is universally better than any
other, and the GIS developer seeks to define
objects that support the intended use of the
data, at the desired level of detail and accu-

racy.

Figure 2-1: A physical entity is represented by a spatial object in a GIS. Here, lakes (dark areas in the photo-
graph) and other land cover types are represented by polygons in the data layers on the right.




A spatial data model (FIgV™® 2-2) may
be defined as the objectsina spatial database
plus the relations ips among them. The term
“model” is fraught with ambiguity because it
is used in many disciplines to describe many
things. Here, a spatial data model prOV}dCS a
formal means of representing and mampu!at—
ing spatially referenced information. In Fig-
ure 2-1, our data model consists 0f tw0 parts.
The first is a set of polygons recording the
edges of distinct land uses, and the second
part (not shown in the figure) is a set of num-
bers, letters, or words associated with each
polygon. The data model is the most recog-
nizable level in our computer abstraction of
the real world. Data structures (how we
organize the information in the computer)
and binary machine code (how we record
it), are successively less recognizable but
more computer-compatible forms of the spa-

tial data (Figure 2-2).

Most GIS store our data as a set of lay-
ers (Figure 2-3). Each layer organizes the
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spatial and attribute data for a kind of carto=

phic object, and are often referred to as
thematic layers. As an example, consider a
GIS database that includes a soils data layer,
a population data layer, an elevation data
layer, and a roads data layer. The roads layer
contains only roads data, including the loca-
tion and properties of roads in the analysis
area, Information on soils, political boundar-
ies, and elevation are contained in their
respective data layers. Through analyses we
may combine data to create a new data layer;
for example, we may identify areas that have
high elevation and join this information with
the soils data. This combination may create a
new data layer with a composite soils-eleva-
tion variable.

Coordinates are used to define the spa-
tial location and extent of geographic objects
(Figure 2-4). A coordinate most often con-
sists of a pair o triplet of numbers that spec-
ify location in relation to an origin. The
coordinates quantify the distance from the
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gin when measured along standard direc-
ns. Single or groups of coordinates are
ganized to represent the shapes and bound-
ies that define objects. Coordinates are
ually based upon standardized map projec-
ns (discusscd in Chapter 3). Each projec-
on unambiguously defines the coordinate
Jlues for every point in an area.

Typically, attribute data complement the
sordinate data for cartographic objects
Figure 2-4). These attribute data record the
on-spatial components of an object, such as
name, color, pH, or cash value. Keys,
abels, or other indexes are used so that the
oordinate and attribute data may be viewed,
elated, and manipulated together.

political
boundaries

Earth wgs -
arth 4@

surface

Figure 2-3: Spatial data are often stored as separate
thematic layers, with objects grouped based on a
set of properties, e.g., water, roads, or land cover,
or some other agreed-upon set.
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Figure 2-4: Coordinate and attribute data are
used to represent entities.

Coordinate Data

Coordinates define location in two- or
three-dimensional space. Spatial data ina
GIS most often use coordinate pairs, X andy,
in a Cartesian coordinate system, named
after Rene Descartes, the system’s origina-
tor, These pairs define data on a flat, two-
dimensional surface, and define the loca-
tions of features in our data layers.When
working over large areas, We often require a
three-dimensional representation. Coordi-
nates in three dimensions are a bit more
complicated because two alternate systems
are common. Most adults are familiar with
the concepts of latitude (6), longitude (A)
and an elevation to define locations on the
surface of the Earth. Spatial calculations are
often easier in a three-dimensional Cartesian
system starting near the Earth’s center and
using coordinate triplets X, ¥, and Z. These
alternate conventions for coordinate systems
are described in turn in the following sec-
tions.
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Planar Coordinate Systems

Planar, two-dimensional (2-D) Cartesian
coordinate systems are the most common
choice for GIS data storage and analysis.
These systems define two orthogonal axes
(right angle, or 90°), forming a plane (Figure
2-5). We specify a Y-axis, usually aligned at
or close to a north-south direction, and an X-
axis, usually aligned at or near an east-west
direction. The Y-axis is often referred to as a
northing axis and values increase upwards in
a grid north direction. The X-axis is often
referred to as an easting axis with values
increasing to the right.

We must be careful when making mea-
surements on our flat, 2-D data. When we
display geographic data on a flat surface, we
unavoidably distort relative locations,
because the Earth’s true surface is curved.
Distance or area measurements are not the
same on our imaginary flat surface as on the
Earth’s surface. We typically introduce small
errors when we ignore the Earth’s curvature,
and we can keep errors below acceptably
small values by limiting the area over which
we use our flat 2-D model. As the mapped
distance increases, the error increases to
magnitudes we usually can’t ignore. Specific
methods for managing distortion in this
curved to flat surface conversion are dis-
cussed in Chapter 3.
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Figure 2-5: A 2-D coordinate system defines
nate locations by these X-Y pairs. Coordinat
and lines of constant X or Y values may be
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Coordinates on a Sphere

When we map over larger areas or whep
we need the highest precision and accuracy,
we often use a three-dimensional, spherical
coordinate system. Hipparchus, a Greek
mathematician of the 2nd century B.C., was
among the first to specify locations on the
Earth using angular measurements on a
sphere. A common spherical system uses
two angles of rotation on a sphere with a
fixed radius, R, to specify locations on Earth
(Figure 2-6). The first angle of rotation, the
longitude (1), measures east-west distances
around the polar, rotational axis of Earth.
Zero is set for a line that passes near the
Greenwich Observatory in England, and the
distance angle is positive eastward and nega-
tive westward (Figure 2-6). The zero longi-
tude, also known as the Prime Meridian or
the Greenwich Meridian, was first specified
through the Royal Greenwich Observatory
in England, but measurement improvements,
crustal movements, and changes in conven-
tions now place zero longitude about 102

meters (335 feet) east of the Greenwich
Observatory.

A second angle of rotation, measured
along north-south lines that intersect the
poles, is used to define a latitude (¢, Figure
2-6). Latitudes are specified as zero at the
Equator, the line encircling the Earth that is

2-D Cartesian Coordinate Systems
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Rotation axis at the geographic
North Pole, A=?, $=90
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Figure 2-6: Conventions when referring to geographic latitudes and longitudes. Meridians are lines running
north-south that have constant longitudes. Parallels are lines running east-west that have constant latitudes.

Latitude is zero on the Equator. Longitude is zero on
because all longitudinal meridians intersect there (A

always halfway between the North and
South Poles. By convention, latitudes
increase to maximum values of 90 degrees n
the north and south, or, if a sign convention
is used, from -90 at the South Pole to 90 at
the North Pole. Lines of constant longitude
are called meridians, and lines of constant
latitude are called parallels (Figure 2-6).
Because the meridians converge, geo-
graphic coordinates do not form a Carte-
sian system. A Cartesian system defines
lines on a right-angle, planar grid. Geo-
graphic coordinates occur on a curved sur-
face, and the longitudinal lines cross at the
poles. This convergence means the distance
spanned by a degree of longitude varies
from approximately 111.3 kilometers at the
Equator, to 0 kilometers at the poles. In
contrast, the ground distance for a degree

the Greenwich Meridian and undefined at the poles,
= 2 in the figure).

of latitude varies only slightly, from 110.6
kilometers at the Equator to 111.7 kilome-
ters at the poles. The slight difference with
latitude is due to a non-spherical Earth,
something we’ll describe a bit later.

Convergence causes distortion because a
degree of latitude spans a greater distance
near the poles than a degree of longitude.
For example, “circles” with a fixed radius in
geographic units, such as 5°, are not circles
on the surface of the globe, with distortion
greatest at the poles (Figure 2-7, left). They
may appear as circles when the Earth’s sur-
face is “unrolled” and plotted on a flat map
(Figure 2-7, right), but treating spherical
coordinates (latitudes/longitudes) as Carte-

sian coordinates creates an inherently dis-
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i -7: ic coordinates on a spherical (left) and Cartesian (right) representation. Notice that “cir-
Ellegsl'l‘rgezﬁrz&(l} l‘:;%amsp(ll‘egree radius do not fgrm circles on the Earth’s surface near the poles, as shown on the
spherical representation (left figure), but appear as circles in the highly distorted Cartesian plot of geographic
coordinates (right). This figure illustrates both that a) the surface distance for a unit of longitude changes
depending on your location on Earth, and b) a Cartesian plot of geographic coordinates is highly distorted.

torted map. Note the distorted shape of
Antarctica in Figure 2-7, right.

Because the spherical system for geo-
graphic coordinates is non-Cartesian, for-
mulas for area, distance, angles, and other
geometric properties used in a Cartesian
coordinate system should not be used with
geographic coordinates. Areas are usually
calculated after converting to a projected
system, described in chapter 3.

There are two primary conventions
used for specifying latitude and longitude
(Figure 2-8). The first uses a leading letter,
N, S, E, or W, to indicate direction, fol-
lowed by a number to indicate location,
Northern latitudes are preceded by anN
and southern latitudes by an S, for exam-
ple, N90°, 810°. Longitude values are pre-
ceded by an E or W, for example W11(°,
Longitudes range from 0 to 180 degrees
cast or west. Note that the east and west
longitudes meet at 180 degrees, so that
E180° equals W180°,

Signed coordinates are the second com-
mon way to specify latitude and longitude,
Northern latitudes are positive and southern
latitudes are negative, and eastern |
positive and western longitudes negative,
Latitudes vary from -90 degrees to 90
degrees, and longitudes vary from -180
degrees to 180 degrees. By this convention
the longitudes “meet” at the maximum and,
minimum values, so -180° equals 180°

&

ongitudes

Coordinates may easily be converted
between these two conventions. North lati-
tudes and east longitudes are converted by
removing the leading N or E. South latitudes
and west longitudes are converted by first
removing the leading S or W, and then
changing the sign of the remaining number
from a positive to a negative value.

Spherical coordinates are most often
recorded in a degrees-minutes-seconds
(DMS) notation: N43° 357 20" for 43
degrees, 35 minutes, and 20 seconds of lati-
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60, or 60 minutes, for each degree
60", or 60 seconds, for each minute

1° = 60'

1 = 60"

360°

North Pole

Figure 2-9: There are 360 degrees in a complete circle, with each degree composed of 60 minutes, and each

minute composed of 60 seconds.

tude. In DMS, each degree is made up of 60
minutes of arc, and each minute is in turn
divided into 60 seconds of arc (Figure 2-9).
This yields 60 times 60, or 3600 seconds for
each degree of latitude or longitude. Note
that the ancient Babylonians established
these splits almost 4,000 years ago, defining
360 degrees for a complete circle, and we’ve
carried this convention down to today.

Spherical coordinates may also be
expressed as decimal degrees (DD). When
using DD, the degrees take the usual -180 to
180 (longitude) and -90 to 90 (latitude)
ranges, but minutes and seconds are reported
as a decimal portion of a degree (from 0 to
0.99999...).

Conversion between DMS and DD 1S
shown in Figure 2-10.

DD from DMS
DD = D + M/60 + S/3600
eg.

DMS = 32° 45' 28"
DD = 32 + 45/60 + 28/3600

=32+ 0.75 + 0.0077778
= 32.7577778

DMS from DD

D = integer parf

M = integer of decimal part X 60
S = 2nd decimal x 60

eg
DD = 24.93547

D =24

M = integer of first decimal x 60
- 0.93547 x 60
= integer of 56.1282
= 56

ot
S = 2nd decimal x 60
- 01282 * 60 = 7.692
so DMS is
24° 56' 7.692"

ure 2-10 Examples for converting between
DMS and DD expressions of spherical coordi-
nates.

g
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Spherical vs. Ellipsoidal Earth software often prompts the user for a

or spheroid when defining a coordinate pro.
While we often describe the Earth’s

; jection, and then lists a set of ellipsoids, with
shape as a sphere, it is better approxnpated differing polar and equatorial radii,
as an ellipsoid. A sphere is a solid object

: The best estimates of Earth’s radii. q and
location and an equal :
faegﬁz‘:: Zl?:i?elgzirons An ellipsoid iz an b, have evolved as measurement systems
approximately spherical solid, but with have improved. Today, the best estimate for

unequal radii along the axes. Spheroidsand 0118 6,378,137.0 meters (m), and for b
elipsoids maybe viewsd in cross secion, 6,356,752.3 m. A mean value of 6,367,447
revealing their difference in shape (Figure 2-  m s often used for spheroids, but sometimes
11). The Earth’s shape is best viewed as an Fhe value for a is adopted, 6,378,137 m, or
ellipsoid flattened in the north-south direc- ~ just 6,378 km.

tion. This flattening is quite small, approxi-

mately one part in 300. Translated to human

scales, this is about an 8 mm (1/30th of an

inch) flattening in a basketball. While diffi-

cult to observe directly, it is large enough to

distort common geodetic measurements and

navigation on the surface of the Earth, Many

navigation and measurement estimates have

two sets of formulas, one an approximation

based on a purely spherical globe, and a

more complicated and precise set based on
an ellipsoidal shape.

Note that the words spheroid and ellip-
soid are often used interchangeably, GIS

Sphere

R = Gex P+ (y-y,)2 Elipse Oexo)®  (y-yo)’

pole
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Figure 2-11: Spherical (left) vs. ellipso; :
gle radius, while an ellipse has diﬁefeﬂf:éi(g%ht) approximat;

. 3 T ations of the B A .
ellipsoid can be thought of as rotating these twong the semi.mg; arth’s shape. A sphere has a sin-




Converting Arc to Surface Dis-
tances

At times we need to calculate the dis-
tance on the surface of the Earth that is
spanned by an arc measure. For example,
might have two locations that differ by 10
seconds of arc, and wish to estimate the dis-
tance between them. We can approximate
the surface distance on a circle or sphere by
the formula:

o = [P0l (2.1)

where d is the approximate ground distance,
ris the radius of the circle or sphere, and 0 is
the angle of the arc. There is a more compli-
cated formula for ellipsoidal surfaces, but
the above formula is acceptable for most
applications.

3 radius

d =radius « 6

where 6 is measured in radians,
with
1 radian = 57.2957°

Given an Earth radius of 6,378,137 m, how
much distance is spanned by 10" of arc?

Arc= 10"/3600"/1° = 0.00277778

-0.00277778°/57.2957 degrees per radian
= 0.000048481435 radians

d = 6378137m « 0.000048481435
= 309.2 meters

Figure 2-12: Example calculation of the approxi-
mate surface distance spanned by an arc.

1 |aplc| . Valda vivueio A

Converting degrees to radians:
30.1487 degrees is

30.1487 / 57.2957795
= 0.52619 radians

Converting radians to degrees:
1.284 radians is

1.284 x 57.2957795
= 73.5678 degrees

Figure 2-13: Conversion between radian and
degree angle units.

Figure 2-12 shows an example calcula-
tion of arc length, using the average radius
for Earth. Note that equation (2.1) applies to
a generic arc angle, measured in the direc-
tion of the spanned arc, without regard to the
latitude/longitude system. Substituting lati-
tude values will result in a reasonably accu-
rate answer, but substituting longitude
values anywhere but along the Equator will
result in an error, largest near the poles, due
to longitudal convergence. The formula is
best used as a first approximation of distance
spanning generic arcs, and not using longitu-
dinal coordinates.

Note that the angle should be specified
in radian measure, defined as 27 radians per
the 360 degrees, or approximately
57.2957795 degrees per radian. Radian mea-
sures are an alternative to degrees, and scale
the rotation by the radius of the circle. You
may easily convert between radian and
degree units (Figure 2-13). Many spread-
sheet, online, and app programs by default
use radian measure, and substituting degrees
will lead to errors.
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Great Circle Distance
Spherical approximation

Consider two points on the Earth's surface,

A with latitude, longitude of (¢,, A,). and

B with latitude, longitude of (¢g, Ag)

great circle

small circle

The great circle distance between points on a sphere is given by the formula:

d = r - 2\sint{(sin’(49) + cos(p,) - cos(eg) - sin“ ()]

where d is the shortest distance on the surface of the Eor‘rh from A to B,
r is the Earth's radius, approximately 6378 km,and ATQ’.M are the differences
between point latitudes and longitudes, divided by two

2

As an example, the distance between Paris, France, and Seattle, USA, is:

Latitude, longitude of Paris, France = 48.864716°, 2.349014°
Latitude, longitude of Seattle, USA = 47.655548°. -122.30320°

d-= 6378.2\/sin-l[(sin2(0.604584))+cos(48,864716)-cos(47.655548)-sine(oz.36107)]

= 8,034.8391km

Figure 2-14: Calculation of the great circle distance between points.

The great circle distance formula should
be used to estimate the surface distance
between two points when using latitudes/
longitudes (Figure 2-14). A great circle is
defined by any plane that intersects a globe
and passes through it’s center. The Equator
and meridians are great circles, while lines
of equal latitude other than the Equator are
not great circles. A great circle distance is
the shortest path on the Earth’s surface
bptween two points, and long-distance ajr-
line routes approximate great circles, As
with all trigonometric formulas, you shoulq
know if your calculations expect degree or

radian measures as input, and convert
accordingly.

Three-DimensionaI, Earth

-Cen-
tered Coordinates

~ We noted an alternate, three-dimen.-
sional (3-D) Cartesian Iepresentation of
coordinates for locations, typically in, op or
near the Earth (Figure 2-15). This is com’.
monly used in geodesy, the science of the
Earth’s shape, size, and physical dynamics

that underpins all coordinate measures.
Geodesy is at the heart of map projections
(Chapter 3) and satellite positioning (Chap-
ter 5), fundamental building blocks of GIS.
The 3D Cartesian system typically
places the origin near or at the mass center of
the Earth. This Cartesian system is aligned
with the Z axis through the geographic North
Pole and the X and Y axes forming a plane

3-D Cartesian Coordinate System
74
A

§ X
origin,
x:&:zzo

Y

Fi -15- 3
8Ure 2-15: A 3-D Cartesian coordinate system.
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Z
north pole

Greenwich
meridian

south pole
longitude, |atitude from Known 3-D Cartesian

Ap, 65 = F (Xp,Yp,Zp)
3-D Cartesian from known |atitude, longitude

Xo,Yp,Zp= G (g, 6p)

Figure 2-16: Formulas exist to convert between
known spherical geographic coordinates (latitude
and longitude on a spheroid) and corresponding 3-
D Cartesian coordinates (see appendix C).

on the Equator (Figure 2-16). The positive
X-axis intersects the ellipsoid where latitude
and longitude values are both zero, and the
positive Y-axis intersects the ellipsoid at a
longitude of 90 and latitude of 0.

Mathematical formulas allow us to cal-
culate any X, Y, and Z given any latitude,
longitude, and Earth radii (Figure 2-16).
Each latitude/longitude/radius coordinate n
the geographic system corresponds to an X-
y-Z triplet in the 3-D Cartesian coordinate
system. These formulas are commonly used
by geodesists in the most precise surveys,
but are also embedded in many softwares
that convert between different versions of
our coordinate data.

There are two different sets of equa-
tions, one assuming a spherical Earth, and a
more accurate one assuming an ellipsoidal
Earth. A detailed discussion of these is best
left for an advanced course, so formulas are
included in Appendix C for reference.
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Geographic and Magnetic North

' There is often confusion between mag-
netic north and geographic north. Magnetic
nprth and the geographic north do not coin-
cide (Figure 2-17). Magnetic north is the
location towards which a compass points.
The geographic North Pole is the average
northern location of the Earth’s axis of rota-
tion. If you were standing on the geographic
North Pole with a compass, it would point
approximately in the direction of the Bering
Straits, and some 200 kilometers away. In
addition, Magnetic North “wanders” through
time, and has recently increased it’s rate of
shift (Figure 2-17).

Because magnetic north and the geo-
graphic North Pole are not in the same place,
a compass does not point towards geo-
graphic north when observed from most
places on Earth. The compass will usually
point east or west of geographic north, defin-
ing an angular difference called the magnetic
declination. Declination varies across the
globe, and also has varied through time as
magnetic north wanders.

Note that our definition of geographic
north is the average northern location of the
Earth’s axis of rotation. We say average
because the Earth wobbles, or nutates, on its
axis. This means the axis location varies

i i i h Poles.
Figure 2-17: Magnetic and geogrgphlc Nort! :
Yegar dates show how the Magnetic North has wan-
dered through time, increasing in velocity over the
past few decades.
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slightly, within a circle about 9 meters.(30‘
feet) across, so the northern pole logatlon 1S
always within this circle. The nutation has a
period of 433 days, with the pole returning
back to its original location over that time.

Attribute Data and Types

Attribute data are used to record the
non-spatial characteristics of an entity. Attri-
butes, also called items or variables, may be
envisioned as a list of characteristics that
describe features. Color, depth, weight,
owner, vegetation type, or land use are
examples of variables that may appear as
attributes. Attributes record values: for
example, a fire hydrant may be colored red,
yellow, or orange, have 1 to 4 flanges, and a

pressure rating of any real number from 0 to
12,000.

Attributes are often presented in tables
and arranged in rows and columns (Figure 2-
18). Each row corresponds to a spatial

Object: Spatial data:
fire hydrant hydrants in a district
R P &
N ;j‘ .

Attribute data:
Properties of hydrants

Flanges | Color Rating
red high

_\\
red high
\\
green low
'\'\
red mid
\'\
L Sllel =)
Figure 2-18: Attributes are typically envisioned

ina tabllc. witl_l objects arranged in rows and attri
butes aligned in columns, F

gt
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object, and each column corresponds o
attribute. Tables are often organized and
managed using a specialized computer pro-
gram called a database management System
(DBMS, described more fully in Chapter 8).

All attributes can be categorized as
nominal, ordinal, or interval/ratio attributes
Nominal attributes are variables that provide
descriptive information about an object, T
color is recorded for each hydrant in Figure
2-18. Other examples of nominal data are
vegetation type, a city name, the owner of;
parcel, or soil series. There is no implied
order, size, or quantitative information con-
tained in nominal attributes.

Nominal attributes may also be images,
film clips, audio recordings, or other
descriptive information, for example, GIS
for real estate often have images of the
buildings as part of the database. [mage,
video, or sound recordings stored as attri-
butes are sometimes referred to as “BLOBs”
for binary large objects.

Ordinal attributes imply a ranking by
their values. An ordinal attribute may be
descriptive, such as high, mid, or low, or it
may be numeric; for example, an erosion
class with values from 1 to 10. The order
reflects only rank, and not scale. An ordinal
value of four has a higher rank than two, but

We can’t infer that the attribute value is twice
as large.

Interval/ratio attributes are used for
numeric items where both rank order and
absolute difference in magnitudes are repre-
sented, for example, the number of flanges
in the second column of Figure 2-18. These
dgta are often recorded as real numbers on a
linear scale. Area, length, weight, height, or
depth are a few examples of attributes that
are represented by interval/ratio variables.
Items have a domain. a range of values
may take. Colors might be restricted to
yellow, and green; cardinal direction to
est; and size to all

they
red,

non_h, south, east, or w
POsitive real numbers.



